776 research outputs found

    Realization of Analog Wavelet Filter using Hybrid Genetic Algorithm for On-line Epileptic Event Detection

    Get PDF
    © 2020 The Author(s). This open access work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/.As the evolution of traditional electroencephalogram (EEG) monitoring unit for epilepsy diagnosis, wearable ambulatory EEG (WAEEG) system transmits EEG data wirelessly, and can be made miniaturized, discrete and social acceptable. To prolong the battery lifetime, analog wavelet filter is used for epileptic event detection in WAEEG system to achieve on-line data reduction. For mapping continuous wavelet transform to analog filter implementation with low-power consumption and high approximation accuracy, this paper proposes a novel approximation method to construct the wavelet base in analog domain, in which the approximation process in frequency domain is considered as an optimization problem by building a mathematical model with only one term in the numerator. The hybrid genetic algorithm consisting of genetic algorithm and quasi-Newton method is employed to find the globally optimum solution, taking required stability into account. Experiment results show that the proposed method can give a stable analog wavelet base with simple structure and higher approximation accuracy compared with existing method, leading to a better spike detection accuracy. The fourth-order Marr wavelet filter is designed as an example using Gm-C filter structure based on LC ladder simulation, whose power consumption is only 33.4 pW at 2.1Hz. Simulation results show that the design method can be used to facilitate low power and small volume implementation of on-line epileptic event detector.Peer reviewe

    Design of Gm-C wavelet filter for on-line epileptic EEG detection

    Get PDF
    Copyright © 2019 The Institute of Electronics, Information and Communication EngineersAnalog filter implementation of continuous wavelet transform is considered as a promising technique for on-line spike detection applied in wearable electroencephalogram system. This Letter proposes a novel method to construct analog wavelet base for analog wavelet filter design, in which the mathematical approximation model in frequency domain is built as an optimization problem and the genetic algorithm is used to find the global optimum resolution. Also, the Gm-C filter structure based on LC ladder simulation is employed to synthesize the obtained analog wavelet base. The Marr wavelet filter is designed as an example using SMIC 1V 0.35μm CMOS technology. Simulation results show that the proposed method can give a stable analog wavelet filter with higher approximation accuracy and excellent circuit performance, which is well suited for the design of low-frequency low-power spike detector.Peer reviewe

    An Analysis on the Development Model of China’s County-level E-commerce

    Get PDF
    Based on the case studies of e-commerce activities in six counties of China’s eastern, middle and western regions respectively, this paper has probed into the characteristics of e-commerce development of each county, which are then classified into four development models of county-level e-commerce in China, featuring the integration and aggregation of resources endowment and production factors. The paper further analyzes the key factors contributing to the success of county-level e-commerce development, in a bid to provide reference and guidance for other counties in their e-commerce activities

    Online Cross-Sectional Monitoring of a Swirling Flame Using TDLAS Tomography

    Get PDF

    Surprising complexity of the ancestral apoptosis network

    Get PDF
    A comparative genomics approach revealed that the genes for several components of the apoptosis network with single copies in vertebrates have multiple paralogs in cnidarian-bilaterian ancestors, suggesting a complex evolutionary history for this network

    Liver fatty acid composition in mice with or without nonalcoholic fatty liver disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nonalcoholic fatty liver disease (NAFLD) is one of the most frequent causes of abnormal liver function. Because fatty acids can damage biological membranes, fatty acid accumulation in the liver may be partially responsible for the functional and morphological changes that are observed in nonalcoholic liver disease. The aim of this study was to use gas chromatography-mass spectrometry to evaluate the fatty acid composition of an experimental mouse model of NAFLD induced by high-fat feed and CCl<sub>4 </sub>and to assess the association between liver fatty acid accumulation and NAFLD. C57BL/6J mice were given high-fat feed for six consecutive weeks to develop experimental NAFLD. Meanwhile, these mice were given subcutaneous injections of a 40% CCl<sub>4</sub>-vegetable oil mixture twice per week.</p> <p>Results</p> <p>A pathological examination found that NAFLD had developed in the C57BL/6J mice. High-fat feed and CCl<sub>4 </sub>led to significant increases in C14:0, C16:0, C18:0 and C20:3 (P < 0.01), and decreases in C15:0, C18:1, C18:2 and C18:3 (P < 0.01) in the mouse liver. The treatment also led to an increase in SFA and decreases in other fatty acids (UFA, PUFA and MUFA). An increase in the ratio of product/precursor n-6 (C20:4/C18:2) and n-3 ([C20:5+C22:6]/C18:3) and a decrease in the ratio of n-6/n-3 (C20:4/[C20:5+C22:6]) were also observed.</p> <p>Conclusion</p> <p>These data are consistent with the hypothesis that fatty acids are deranged in mice with non-alcoholic fatty liver injury induced by high-fat feed and CCl<sub>4</sub>, which may be involved in its pathogenesis and/or progression via an unclear mechanism.</p

    Dynamic Transfer Learning across Graphs

    Full text link
    Transferring knowledge across graphs plays a pivotal role in many high-stake domains, ranging from transportation networks to e-commerce networks, from neuroscience to finance. To date, the vast majority of existing works assume both source and target domains are sampled from a universal and stationary distribution. However, many real-world systems are intrinsically dynamic, where the underlying domains are evolving over time. To bridge the gap, we propose to shift the problem to the dynamic setting and ask: given the label-rich source graphs and the label-scarce target graphs observed in previous T timestamps, how can we effectively characterize the evolving domain discrepancy and optimize the generalization performance of the target domain at the incoming T+1 timestamp? To answer the question, for the first time, we propose a generalization bound under the setting of dynamic transfer learning across graphs, which implies the generalization performance is dominated by domain evolution and domain discrepancy between source and target domains. Inspired by the theoretical results, we propose a novel generic framework DyTrans to improve knowledge transferability across dynamic graphs. In particular, we start with a transformer-based temporal encoding module to model temporal information of the evolving domains; then, we further design a dynamic domain unification module to efficiently learn domain-invariant representations across the source and target domains. Finally, extensive experiments on various real-world datasets demonstrate the effectiveness of DyTrans in transferring knowledge from dynamic source domains to dynamic target domains
    corecore